
UNCLASSIFIED MAST:R COPY - FOR REPRODUCTION PURPOSES
SECIRITY CLASSIFICATION OF THIS PAG,. "' R TD U AO G

REPORT DOCUMENTATION PAGE
Ia REPORT SECURITY CLASSIFICATION D [' lb. RESTRICTIVE MARKINGS

_. lnela 'li fi t i __ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ __ _ _ _ _

E I. EkC T E 3. DISTRIBUTION' AVAILABILITY OF REPORT
Approved for public release;
distribution unlimited.

AD-A213 786 IBER(S)M S. MONITORING ORGANIZATION REPORT NUMBER(S)
mu QD

ARO 23785.3-EL-F

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL -7a. NAME OF MONITORING ORGANIZATION

Univ of North Carolinab (If applicable)I____________ U. S. Army Research Office

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Chapel Hill, NC 27514 P. 0. Box 12211

Research Triangle Park, NC 27709-2211

Ba. NAME OF FUNDING /SPONSORING J8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTICICATION NUMBER
ORGANIZATIONI (if applicable)

U. S. Army Research Office DAAL03-86-G-0050

&c. ADDRESS (City, State, and Z!P Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNIT•"ELEMENT NO. NO. NO. ACCESSION NO

Research Triangle Park, NC
27709-2211

11. TITLE (Include Security Classification)

A Test Bed for a Massively Parallel Computer Architecture

12 PERSONAL AUTHOR(S)
Gyula Mago

13a TPEOFREOR I1b. TIMO -ED 114. DATEtOFREPT(erotDy)I S. PAGE COUNT
Final FROM'/1/1b T07 /31/89 October 1981'

16. SUPPLEMENT'ARY NOTATION •]llj

The view, opinions and/or findings coLItained in this report are those
of the authr() .and sh uld not be constsued as an fficial Dpartment of the Army position,pn 1 Wy_ nr P~r "in n p.q,, -- 1 anaj t'ar N h orll' . Rl.rn l-t'~

17 COSATI CODES 18. SUBJECT TERMS (Continue on revone if necesay and identify by block number)

FIELD GROUP SUB-GROUP Parallel Computer Architecture, Graph Reduction,

Programming Languages, Lambda Calculus

19. ABSTRACT

Mr. Partain has carried out research on alternatives to graph reduction as it is
commonly understood. His main objective -- which he has reached -- was to
develop a way to do graph reduction without actually using pointers. This will
pormit parallel implementation of functional programming languages without
having to rely on a global address space. Given some suitable machine
primitives, such an implementation is shown by Partain to be competitive with
ordinary graph reduction. From a mathematical point of view, the results provide a
way to do lazy normal-order tree reduction for the lambda calculus.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLAS'IFICATION
O UNCLASSIFIEDAUNLIMITED 0 SAME AS RPT. Q OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Includle Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 53 APR edition may be used until exhausted. SECURITY CLASSIFIKATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED

89 6

FINAL REPORT

1. ARO proposal number: 23785-EL-F

2. Period covered by report: 1 August 1986 -- 31 July 1989

3. Title of proposal: A test bed for a massively parallel computer architecture

4. Contract or grant number: DAAL03-86-G-0050

5. Name of institution: University of North Carolina at Chapel Hill

6. Author 0; ,eport: Gyula Mago
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514

7. Scientific personnel supported by this project

This Army Science and Technology Fellowship was awarded to Mr. William
Partain (SS# 456-31-0758), a graduate student in the Department of
Computer Science at UNC in Chapel Hill.

SUMMARY OF RESEARCH FINDINGS

Mr. Partain has carried out research on alternatives to graph reduction as it is
commonly understood. His main objective -- which he has reached -- was to
develop a way to do graph reduction without actually using pointers. This will
permit parallel implementation of functional programming languages without
having to rely on a global address space. Given some suitable machine
primitives, such an implementation is shown by Partain to be competitive with
ordinary graph reduction. From a mathematical point of view, the results provide a
way to do lazy normal-order tree reduction for the lambda calculus. (For more
details, please see the enclosed pages.)

The final draft of the dissertation has been written, is currently being read by
members of the dissertation committee, and he is expected to finish and defend
his dissertation early in the Fall term of this academic year. He will earn the
PhD degree from UNC, Chapel Hill in Computer Science. P, blications
reporting on this work will be produced subsequent to the defense.

Graph Reduction Without Pointevs

William D. Partain-
(Under the direction of Prof. Gyula A. Magd)

Ph.D. dissertation to be submitted to
T!,c U .rsity of North Carolina at Chapel 1ii1

September 28. 1989

Abstract

Graph reduction is one way to overcome the exponential space blow-
ups that simple normal-order evaluation of the lambda-calculub is likely
to suffer. The lambda-calculus underlies lazy functional programming
languages. which offer hope for improved programmer productivity
based on stronger mathematical underpinnings. Because functional
languages seem well-suited to highly-parallel machine implementations,
graph reduction is often chosen as the basis for these machines' designs. AcesEo. For

Inherent to graph reduction is a commonly-accessile store holding ---
nodes referenced through "pointers," unique global identifiers; graph NTIS CRA&1
operations cannot guarantee that nodes directly connected in the graph Di IC TAB 0
will be in nearby store locations. This absence of locality is inimical U-J, -,"ced E0
to parallel computers, which would prefer having isolated pieces of Js.tCjc,,;
hardware working on self-contained parts of a program.

In my dissertation, I develop an alternate reduction system using By
,suspensions" (delayed substitutions), with terms represented as trees D stibutio: i
and variables by their binding indices (de Bruijn numbers). Global _

pointers do not exist and all operations, except searching for redexes, Aji ,LMrlty Cudes
are entirely loca!. The system is provably equivalent to graph re- Ava- o--o
duction, step for step. I show that, if this kind of interpreter is Ost Secal
implemented on a highly-ptral2! m'-chinv that supports a locality-
preserving linear program-representation and fast scan primitives (an
FFP Machine is an appropriate architecture), then the interpreter's IA-1
worst-case space complexity is the same as a graph reducer (that is, -
equivalent sharing) and its time complexity falls short on only one
unimportant case. On the other side of the ledger, graph operations

'Supported by an Army Science and Technology Fellowship (grant number DAAL03-
86-G-0050) administered by the U. S. Army Research Office.

that involve chaining through many pointers are often replaced with a
single associative-matching operation. What is more, this system has
no difficulty with free variables in redexes and is good for reduction to
full beta-normal form.

These results suggest that non-naive tree reduction is an approach
to supporting functional programming that a parallel-computer archi-
tect should not overlook.

1 Basic results

The basic results in my dissertation are:

* A suspension-based A,-interpreter is a correct implementation of the
pure A-calculus because its manipulations of A,-terms are isomorphic
to the manipulations of A_ -graphs by a graph-reducing Ag-interpreter.

" When the A,-interpreter is implemented on an FFP Machine (FFPM)
or similar architecture, its worst-case space complexity is within a
constant factor of that of a lazy-copying graph-reducer on a global-
addressable-memory (GAM) machine.

* The worst-case time complexity of the FFPM interpreter is equal to or
better than that of the GAM interpreter, except for the last-instance
relocations of suspension pointees.

I conclude that graph reduction does not have an inherent advantage as a
computational model to support lazy functional programming. I now review
the major issues raised by comparing the two in* - ers.

2 Reduction to -normal form

Graph reduction that uses lazy copying is only suited to reduction to weak
3-normal form (WBNF); it cannot cope with free variables in redexes. Also,
binding indices cannot be used with this kind of graph reduction. A graph
reducer must either support a-conversion or use backpointers to avoid name-
capture problems. Also, to enjoy maximal sharing with graph reduction,
one mubt include -xpensive detection of maximal free expressions (MFEs) in
each reduction step ("fully lazy" copying); when reducing to O-normal form
(BNF), the less onerous "lazy" copying does not work.

Suspension-based reduction to BNF works with binding indices, and lazy
copying is a completely natural mechanism. If an implementor ,antc to ,J
a reduction order or normal form that allows free variables in redexes-e.g.,

2

innermost spine reduction or BNF-then suspension-based reduction steps
to the front of the class.

Oddly, the FFPNIl implementation that does so well with suspension
based reduction to BNF finds reduction to WBNF more costly. Algorithms
for finding out if a term is inside a A-abstraction are ill-matched to what the
hardware can do well.

3 Linear representation

The attractions of suspension-based reduction to computer architects center
around a linear representation of program symbols. A symbol need not be
globally addressable nor stored in a global resource.

Binding indices, used to avoid name-capture problems, are very amenable
to manipulation with fast scan primitives. For example, all bound variables
in a A -term can be detected in O(lgn) time.

The use of associative matching to detect redexes and other "interesting"
patterns of symbols is noteworthy. This matching can find a redex anywhere
in a A-term in as little as one step, whereas a graph reducer must necessarily
chain through pointers to get there. An important aspect of this matching
(and the other FFPM algorithms) is the modest amount of "parse-tree" in-
formation that must be synthesized from the raw symbols-no more than
two selectors are ever needed.

I think it worthwhile to have presented a sizable example .using the low-
level techniques possible on an FFPM. I believe that these techniques would
work just as well on any parallel architecture with fast scans and a locality-
preserving linear program-representation.

The cost of a linear program-representation (besides the implementation
cost) is "last-instance relocation," which means that the last copy of a A,-
abstraction must be moved into place. The analysis of this movement shows
how const:ained the "extra" copying of tree reduction can be.

4 The next step

I hope I have laid to rest the notion that "string" reduction is inherently,
wildly inefficient for normal-order reduction. The basic question that fol-
lows is: Can the A,-interpreter be "grown" into a practical mechanism for
the efficient executinn of lazy functional programs? Intimately related to
this question are the questions of what realistic functional programs actu-
ally do ("wb.d happcnn abov") and thc _uastaint, P-d popOCrti,- t ttie

3

target hardware architecture (,what happens below"). The truly successful
architect for a parallel reduction machine will be master of all of these levels.

I sketch several ways in which a ,-interpreter could be extended for
practical use. Suspension lists seem a clear winner, and Revsz's extensions
to integrate lists directly into the calculus are no less intriguing. I would allow
bound-variables in suspension pointees and use that to implement recursion.
I would do some speculative copying based on simple heurist-s derived from
real programs: an example might be, "if filling a suspension's next-but-last
bound variable, fill the last one as well."

4

